Rotational Isomerism in 3,4-Dimethyl-3,4-dinitrohexane

Bee Geok Tan, Lawrence H. L. Chia, and Hsing Hua Huang*
Chemistry Department, National University of Singapore, Singapore 0511

Abstract

I.r. and Raman spectra of 3,4-dimethyl-3,4-dinitrohexane (in the solid and solution states) are reported and assignment of frequencies made. It is assumed that the higher melting isomer has the meso-and the lower melting isomer the (\pm)-configuration. Comparison of the Raman and i.r. spectra of both the solid and solution states of meso-3,4-dimethyl-3,4-dinitrohexane shows that this compound exists in the gauche conformation in the solid state but as a mixture of gauche and trans rotamers in solution. Dipole moments in different solvents (benzene, carbon tetrachloride, and cyclohexane) at different temperatures and molar Kerr constants (in carbon tetrachloride and benzene) are also reported. Analysis of the dielectric data shows that at $25^{\circ} \mathrm{C}$, meso-3,4-dimethyl-3,4-dinitrohexane exists as a rotameric mixture of 53% gauche and 47% trans in carbon tetrachloride solution, and 80% gauche and 20% trans in benzene solution. On the other hand, our spectral data suggest that in the solid state (\pm)-3,4-dimethyl3,4 -dinitrohexane exists as a mixture of the two possible rotamers in which the nitro groups are gauche to each other. In non-polar solvents like carbon tetrachloride, an additional rotamer, in which the nitro groups are trans to each other, appears. Analysis of the dipole moment data suggests that the combined proportion of the 'gauche' rotamers is 24% in carbon tetrachloride and 43% in benzene.

Following our earlier studies on rotational isomerism in 2,3-dimethyl-2,3-dinitrobutane ${ }^{1}$ and 2,2,3,3-tetranitrobutane, ${ }^{2}$ we now report our findings on the related molecule 3,4 -dimethyl-3,4-dinitrohexane based on dielectric, electric birefringence, i.r., and Raman spectroscopic measurements. Unlike the preceding two compounds, 3,4-dimethyl-3,4-dinitrohexane can exist in two diastereoisomeric forms, (\pm) and meso. Both diastereoisomers are capable of exhibiting rotational isomerism (Figures $1-3)$.

Experimental

Solute.-3,4-Dimethyl-3,4-dinitrohexane was prepared from 2 -nitrobutane. ${ }^{3}$ The two diastereoisomers were separated by passing the crude product through a silica gel column (60 F 254) with $1: 4$ chloroform-hexane as eluant. The two isomers were further purified by recrystallization from absolute alcohol: meso-isomer, m.p. $88-89^{\circ} \mathrm{C}$ (lit., ${ }^{3} 87-88^{\circ} \mathrm{C}$); (\pm)isomer, m.p. $86-87^{\circ} \mathrm{C}$ (lit., ${ }^{3} 85-86^{\circ} \mathrm{C}$). In accordance with general practice, it is assumed that this assignment is correct, i.e. the meso isomer has the higher m.p.

Solvents.-Solvents were carefully distilled and/or fractionated and dried before use. Their physical constants required in dielectric and Kerr effect measurements have been previously given. ${ }^{4,5}$

Apparatus.-Kerr constants were measured photometrically ${ }^{6}$ while dielectric constants were determined with a heterodynebeat meter. ${ }^{7}$ Densities and refractive indices were measured by standard procedures. ${ }^{8}$

Solid-state i.r. spectra were recorded as Nujol and hexachlorobutadiene mulls and as KBr pressed-disc samples. Solution-state spectra were obtained using solvents like carbon tetrachloride, carbon disulphide, benzene, chloroform, and acetonitrile. A Perkin-Elmer 682 i.r. spectrophotometer was used for all these i.r. measurements. Raman measurements were made using the 514.5 nm line of a coherent CR-6 argon-ion laser. The spectra were recorded with a Spex 1403 double monochromator in conjunction with a photon-counting system set up in the Physics Department, National University of Singapore.

Figure 1.

(1)

(2)

(3)

Figure 2. Stable conformations of meso-3,4-dimethyl-3,4-dinitrohexane

(4)

(5)

(6)

Figure 3. Stable conformations of (\pm)-3,4-dimethyl-3,4-dinitrohexane

Results and Discussion

The results of all these physical measurements are presented in Tables 1 and 2 and with standard notation.

Table 1．（a）I．r．and Raman spectra of meso－3，4－dimethyl－3，4－dinitrohexane

（b）I．r．and Raman spectra of（ \pm ）－3，4－dimethyl－3，4－dinitrohexane

\times	$3039\left(3 \frac{1}{2}\right)$	$3045(8)$	－	－	\times	\times	\times	3 039（10）	
\times	3000 （40）	3010 （64）	3000 （57）	$3000(53)$	\times	2970 （60）	\times	2991 （7）	
\times	2990 （2）	2990 （2）	2979 （9）	2980 （24）	\times	2960 （11）	\times	2 973（43）	s)
\times	2960 （7）	$2965(17)$	2955（4）	2945（10）	$2955(57)$	2950 （7）	\times	2957（11）	
\times	$2920\left(1 \frac{1}{2}\right)$	$2935(1)$	－	－	－	－	\times	2 903（10）	
\times	2890 （11）	2900 （20）	$2885(29)$	$2885(29)$	$2885(26)$	$2885(32)$	\times	－	vCH_{3}（sym）
\times	$2875(2)$	2880 （412）	2850 sh（2）	2840 sh（1）	2820 （11）	2845 sh（1）	${ }^{\times}$	－	vCH_{2}（sym）
2730 （3）	$2770\left(1 \frac{1}{2}\right)$	2 760（4）	$2755(4)$	2760 （2⿺辶⿳亠丷厂犬）	$2755(3)$	2 755（5）	2760 （4）	－	
$2680\left(3 \frac{1}{2}\right)$	2 680（4）	2 680（6）	2 675（7）	2 670（3）	2 680（5）	2680 （8）	2 690（7）	－	Combination
2390 （3）	$2398(3)$	$2399(8)$	2390 （41 ${ }^{2}$ ）	$2395\left(2 \frac{1}{2}\right)$	2380 （3）	2 400（7）	$2385(8)$	－	
$1551(50)$	1550 （53）	$1545 \mathrm{br}(75)$	$1555 \mathrm{br}(40)$	\times	\times	1550 （68）	\times	$1554(18)$	$\mathrm{vNO}_{2}(\mathrm{as})$

Table 1. (continued)

Nujol	HB	KBr	$\begin{gathered} \mathrm{CCl}_{4} \\ \varepsilon_{20}=2.238 \end{gathered}$	$\underset{2.641}{\mathrm{CS}_{2}}$	$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{6} \\ & 2.284 \end{aligned}$	$\begin{gathered} \mathrm{CHCl}_{3} \\ 4.806 \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN} \\ 37.5 \end{gathered}$	Raman solid	Raman CCl_{4}	Approximate group assignment
$1505(1)$	$1507(2)$	1510 (6)	$1515(10)$	\times	\times	$1505 \mathrm{sh}\left(1 \frac{1}{2}\right)$	\times	$1535(1)$		
$1477\left(\frac{1}{2}\right)$	1475 (2)	1476 (7)	1475 sh(1)	\times	\times	$1475 s h\left(1 \frac{1}{2}\right)$	\times	$1475(1)$		
$1475\left(\frac{1}{2}\right)$	$1465\left(1 \frac{1}{2}\right)$	$1468\left(2 \frac{1}{2}\right)$	1470 (3)	\times	\times	1470 (2)	\times	$1465(3)$		$8 \mathrm{CH}_{3}$ (as)
1460 (27)	$1455(16)$	1458 (20)	1460 (28)	\times	\times	1460 (32)	\times		1460 (2)	CH_{2} (bend)
$1452\left(1 \frac{1}{2}\right)$		1451(2)	$1450(2)$	\times	\times	1448 (2)	\times	1451(7)	1450 (1)	
-	$1433(5)$	1440 (10)	$1435(1)$	\times	$\stackrel{\times}{\times}$	$1433\left(1 \frac{1}{2}\right)$	\times	1443 (26)	$1400(3)$	
1400 (3)	$1404(1)$	$1405(3)$	1400 (1)	x	1392 (19)	1400 (11)	\times	$1407(12)$	$1400(4)$	
\times	1396 (16)	$1399(32)$	1390 (25)	1388 (66)	$1385(9)$	1390 (34)	\times	$1395(1)$	-	
$1365(1)$	$1365\left(1 \frac{1}{2}\right)$	1371 (3)	$1365\left(\frac{1}{2}\right)$	$1365 s h\left(\frac{1}{2}\right)$	$1365 \operatorname{sh}\left(\frac{1}{2}\right)$	$1385(1)$	\times	$1377 \mathrm{sh}(3)$	-	$\mathrm{CH}_{3}(\mathrm{sym})$
$1355(1)$	$1355(1)$	$1360(5)$		-	-	-	\times	$1353(2)$	$1355(2)$	
$1350(8)$	1348 (22)	$1350(38)$	1348 br (31)	1348 (74)	$1349(65)$	$1340 \mathrm{br}(29)$	\times	1349 (26)	$1350(6)$	NO_{2} (sym)
1340 (1)	1340 (1)	$1344\left(4 \frac{1}{2}\right)$	$1339\left(\frac{1}{2}\right)$	$1340 \mathrm{sh}\left(\frac{1}{2}\right)$	$1340 \mathrm{sh}(1)$	-	\times	-	-	
-			$1328(5)$	$1328(16)$	1330 (7)	$1325\left(1 \frac{1}{2}\right)$	\times	$1310{ }^{(8)}$	-	H_{2} (wag) and
$1308(8)$	$1309(12)$	$1310(22)$	1300 (16)	1300 (16)	1301 (19)	$1299(15)$	\times	$1303(9)$	-	CH_{2} (twist)
$1298\left(2 \frac{1}{1}\right)$	$1299(6)$	$1300(10)$	-	-	-	-	\times	-	-	
$1227(1)$	1230 (5)	$1230(5)$	1230 (2)	$1230\left(\frac{1}{2}\right)$	1250 (4)	\times	$1230\left(2 \frac{1}{2}\right)$	$1227(4)$	-	
-	-		-	-	-	-	-	1 195(3)	-	
$1190\left(\frac{1}{2}\right)$	\times	1 192(2)	$1173 \mathrm{sh}\left(\frac{1}{2}\right)$	1173sh(1)	1190 (31 ${ }^{\frac{1}{2}}$)	\times	$1190(1)$	$1175(14)$	$1187(2)$	
1170 (11)	${ }^{\times}$	$1175(31)$	1160 (11)	1160 (7)	\times	$\stackrel{\times}{\times}$	$1171(17)$	-	-	${ }_{\mathrm{C}-\mathrm{C}} \mathrm{CH}_{3}$ and
$1143(7)$	1 143(13)	1146 (23)	1143 (29)	1143 (19)	1140 (13)	1142(24)	$1144(11)$	-	-	
$1137(1)$	$1137(1)$	$1138 \mathrm{sh}(1)$	-	-	$1130(1)$	-	$1131 \operatorname{sh}\left(\frac{1}{2}\right)$	$1135(2)$	-	
1 121(21)	$1122(14)$	1 126(63)	1115(56)	1116 (46)	$1116(67)$	1116(64)	$1120(74)$	-	-	
1050 (21)	$1050(26)$	$1052(62)$	$1049(46)$	1049 (30)	\times	$1045(31)$	\times	$1062(16)$	$1050(5)$	$\begin{aligned} & \mathrm{CH}_{2}(\mathrm{wag}) \text { and } \\ & \mathrm{CH}_{2} \text { (twist) } \end{aligned}$
$1013 \operatorname{sh}\left(1 \frac{1}{2}\right)$	1014sh(1)	$1015 \mathrm{sh}(2)$	-	-	\times	-	\times	1021(30)		
$1005(23)$	$1005(4)$	$1008(59)$	997(33)	$1004(32)$	\times	$1005(55)$	$1000(36)$	-	$1005(3)$	$\mathrm{\rho CH}_{3}$ and
992(3)	\times	996(5)	980(11)	$980 \operatorname{sh}\left(1 \frac{1}{2}\right)$	\times	983sh($1 \frac{1}{2}$)	980(6)	995(9)	-	$\mathrm{VC-C}$
920(21)	\times	922(5)	925(2)	924(3)	928(21)	-	920(1)	925(2)	-	
890(1)	\times	$892\left(\frac{1}{2}\right)$	-	-	$892\left(\frac{1}{2}\right)$	-	898(112)	877(27)	-	
$865(8)$	\times	$868(39)$	863(33)	862(19)	$850(9)$	864(32)	866(22)	--	860(12)	$\mathrm{VC-N}$
847(21)	\times	830(52)	840(45)	$841(33)$	$840(47)$	840(56)	$850(45)$	850(3)	-	
815(30)	\times	$819(75)$	\times	810 (15)	812(26)	\times	816(15)	822(24)	\times	CH_{2} (rock)
$805 \mathrm{sh}(1)$	$\stackrel{\times}{ }$	$805 \mathrm{sh}\left(\frac{1}{4}\right)$	\times	801(47)	800(32)	\times	$805(68)$	-	\times	
\times	761(7)	764(15)	\times	-	\times	\times	750(42)	766(16)	\times	$\mathrm{vC}-\mathrm{C}$ and
$730(9)$	731(12)	735(24)	\times	-	\times	\times	740 (2)	740(10)	\times	$\rho \mathrm{CH}_{3}$
680(2)	680(3)	682(6)	\times	-	\times	\times	685(21)	687(9)	\times	
$665\left(\frac{1}{2}\right)$	\times	665(11)	\times	664(12)	\times	$660\left(1 \frac{1}{2}\right)$	665(1)	-		
641(11)	\times	646(26)	$\stackrel{\times}{\times}$	651(2)	\times	637(15)	640(13)	649(8)	635(1)	
-	-	-	598(22)	598(9)	\times	598(23)	595(7)	575(12)	580(8)	
549(4)	550(7)	551(8)	-	-	-	560(1)	560(21)	554(20)	-	
$523 \operatorname{sh}\left(1 \frac{1}{2}\right)$	521sh(2)	527sh(2)	-	-	-	-	535(1)	526(sh)	-	$\delta \mathrm{C}-\mathrm{C}-\mathrm{C}$
510(20)	510(24)	515(50)	522(30)	523(13)	521(23)	521(31)	526(32)	514(39)	-	
492(5)	492(6)	497(9)	502(13)	503(9)	504(10)	504(12)	504(2)	501(9)		

The numbers in parentheses indicate relative intensities. \times Indicates masking by background solvent or mulling agent. - Indicates absence of absorption. sh $=$ Shoulder, $\mathrm{br}=$ broad. $\mathrm{HB}=$ Hexachlorobutadiene.

Spectroscopy.-(a) meso-3,4-Dimethyl-3,4-dinitrohexane. As this molecule is made up of 30 atoms, 84 fundamental modes are expected of it, given by $3 N-6$ where N is 30 . This compound can exist as a mixture of the trans and two gauche rotamers which are mirror images of each other. Figure 1 shows the trans form. Here the two $\mathrm{C}_{1}-\mathrm{C}_{\mathrm{II}}$ bonds are taken to be non-freely rotating and the methyl groups $\mathrm{C}_{\mathrm{III}} \mathrm{H}_{3}$ orientated as shown because of steric requirements.

The vibrational species of the 84 fundamentals of the trans and gauche rotamers are summarized in Table 3. The gauche rotamer, having no centre of symmetry, would have twice as many absorptions in the i.r. spectrum as the trans, as all the fundamental modes of the gauche rotamer are i.r. and Raman active while only half of these are active in either spectrum for the trans-rotamer.
meso-3,4-Dimethyl-3,4-dinitrohexane differs from 2,3-dimethyl-2,3-dinitrobutane ${ }^{1}$ only in having two ethyl groups in place of two methyl groups. In making spectral assignments, we have taken advantage of our earlier study on the latter
compound as well as the work of Sheppard ${ }^{9}$ on n-paraffins. Comparing the spectra of meso-3,4-dimethyl-3,4-dinitrohexane with those of 2,3-dimethyl-2,3-dinitrobutane, we find extra bands at 813, 1050 and 1059 (doublet), 1297 and 1307 (doublet), and $2860 \mathrm{~cm}^{-1}$ in the former. The band at $813 \mathrm{~cm}^{-1}$ with its characteristically strong intensity can be identified with the CH_{2} rocking modes while the doublet at 1297 and 1307 cm^{-1} can be attributed to the CH_{2} wagging and twisting vibrations. The band at $2860 \mathrm{~cm}^{-1}$ is probably due to the symmetric CH_{2} stretching vibration.

Inspection of the Raman and i.r. spectra in the solid state shows that the frequencies at which the bands occur are not mutally exclusive. Thus we conclude that the conformation in which the molecular rotamer exists in the solid state does not have any centre of symmetry. However, in the i.r. spectra in the solution states, a few extra bands at $486,590,800$, and $979 \mathrm{~cm}^{-1}$ are observed and these bands are found to decrease in intensity with increasing polarity of the solvents. In fact, in the very polar acetonitrile solution, most of the bands, especially those at 590

Table 2. Polarizations, refractions, dipole moments, and molar Kerr constants at infinite dilution of 3,4-dimethyl-3,4-dinitrohexane and 2-nitrobutane

Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Solvent	$\begin{aligned} & \text { Conc. range } \\ & \left(10^{5} w_{2}\right) \end{aligned}$	$\alpha \varepsilon_{1}$	β	γ	δ	P_{2} / cm^{3}	$R_{\text {D }} / \mathrm{cm}^{3}$	$10^{30} \mu^{a} / \mathrm{Cm}$	$\begin{gathered} 10^{27}{ }^{27}\left(K_{2}\right) / \\ \mathrm{m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1} \end{gathered}$
meso-3,4-Dimethyl-3,4-dinitrohexane										
6	Benzene	741-2617	12.76	0.199			524.1		15.48 ± 0.05	
25	Benzene	755-5062	11.10	0.258	-0.012	-24.58	478.0	48.7	15.25 ± 0.03	-499 ± 6
45	Benzene	740-2 601	9.42	0.245			430.0		14.79 ± 0.05	
5	CCl_{4}	462-1261	13.18	-0.383			327.1		11.84 ± 0.10	
25	CCl_{4}	545-2 616	12.36	-0.368	-0.018	6.31	318.6	49.9	12.04 ± 0.07	5 ± 1
45	CCl_{4}	825-1964	11.55	-0.352			311.7		12.24 ± 0.07	
25	Cyclohexane	647-1453	6.06	0.352			340.3	49.8	12.51 ± 0.07	
(\pm)-3,4-Dimethyl-3,4-dinitrohexane										
25	Benzene	737-5114	5.98	0.249	-0.017	-13.51	281.9	48.4	11.21 ± 0.03	-267 ± 6
25	CCl_{4}	682-2 366	5.49	-0.382	0.013	3.71	170.4	49.8	8.01 ± 0.03	6 ± 1
25	Cyclohexane	586-1541	2.50	0.315			168.5	49.7	7.94 ± 0.07	
2-Nitro	tane				γ^{\prime}					
25	Benzene	1835-3430	12.23	0.066	-0.119		270.0	27.0	11.48 ± 0.07	

${ }^{a} \mu$ is calculated assuming that ${ }_{\mathrm{D}} P=1.05 R_{\mathrm{D}}$.

Table 3.

Point group	Vibrational species	No. of fundamentals
C_{i}	$A_{\mathrm{g}} 3 n-3$	42
(trans rotamer)	$A_{u} 3 n+3 n_{\mathrm{o}}-3$	42
C_{l}	$A 3 n-6$	84
(gauche rotamer)		

and $800 \mathrm{~cm}^{-1}$, are nearly not observable. These bands are thus assigned to the trans rotamer and their existence leads to the conclusion that only the gauche rotamer is present in the solid state. This is very similar to 2,3 -dimethyl-2,3-dinitrobutane which has been found to exist only in the gauche form in the solid state and as a mixture of gauche and trans rotamers in solution. The very weak intensities of the bands attributed to the trans rotamer in acetonitrile shows the very small proportion of this rotamer in this very polar solvent. However, the proportion of trans rotamer in carbon tetrachloride and carbon disulphide is higher than in acetonitrile, indicating that the trans population decreases as the polarity of the solvent increases.

Since the extra bands in solution are attributable to the trans rotamer, all the bands in the solid-state spectra must be due to the gauche. The doublet at 852 and $862 \mathrm{~cm}^{-1}$, which can be assigned to the $\mathrm{C}-\mathrm{N}$ stretching vibrations of the gauche form, is of particular interest. Diallo, ${ }^{10}$ in his study of 2,3-dimethyl-2,3dinitrobutane in the solid state, observed only two bands at 850 and $843 \mathrm{~cm}^{-1}$ attributable to the $\mathrm{C}-\mathrm{N}$ vibrational modes. Since there should be one such active band for the trans rotamer $\left(C_{2 h}\right)$ state and two bands for the gauche rotamer (C_{2}), he concluded that 2,3-dimethyl-2,3-dinitrobutane exists in the gauche conformation in the solid state. In the case of meso-3,4-dimethyl-3,4dinitrohexane, it is also expected that the gauche rotamer would have two $\mathrm{C}-\mathrm{N}$ i.r. stretching bands while the trans should have only one. Thus, the presence of only the doublet supports our conclusion that only the gauche rotamer, and not the trans, exists in the solid state.

Comparison of the solid- and solution-state spectra shows that many bands decrease in intensity on dissolution, especially in non-polar solvents. Such bands are at 521, 557, 914, 1059 ,

1138,1175 , and $1297 \mathrm{~cm}^{-1}$ and are attributed to the gauche rotamer. The weak band at $914 \mathrm{~cm}^{-1}$ practically disappears in carbon disulphide and carbon tetrachloride but reappears in the very polar acetonitrile solution. Bands at 1059,1 138, and 1297 cm^{-1} become very weak in carbon disulphide and carbon tetrachloride solutions in which they appear only as shoulders. The spectral features become very much like in the solid state in the very polar acetonitrile solution, showing that the gauche rotamer predominates in this solvent.

However, some bands are found to increase in intensity on dissolution in non-polar solvents. This is probably due to the fact that the bands due to the trans rotamer (which comes into existence in solution) coincide with the gauche bands, causing a resultant increase in their intensities. Two such bands are at 505 and $862 \mathrm{~cm}^{-1}$. In the solid state the band at $505 \mathrm{~cm}^{-1}$ only appears as a shoulder to the stronger band at $521 \mathrm{~cm}^{-1}$. However, on dissolution in carbon disulphide and carbon tetrachloride, the band at $521 \mathrm{~cm}^{-1}$ (due to the gauche rotamer) decreases in intensity so that the relative intensities are reversed. However, in solutions of benzene, chloroform, and acetonitrile, the relative intensities are reversed again. A similar situation occurs for the band at $862 \mathrm{~cm}^{-1}$. In the solid state, it is of lower intensity than its neighbour at $852 \mathrm{~cm}^{-1}$. However, in carbon disulphide and carbon tetrachloride, it has higher intensity than its neighbour and the situation is reversed in benzene, chloroform, and acetonitrile.

Bands at 590 and $486 \mathrm{~cm}^{-1}$ attributed to the trans rotamer of meso-3,4-dimethyl-3,4-dinitrohexane bear strong resemblance to the two bands at 598 and $495 \mathrm{~cm}^{-1}$ attributed to the trans rotamer of 2,3 -dimethyl-2,3-dinitrobutane. These bands have been assigned to the symmetric $\mathrm{C}-\mathrm{C}-\mathrm{C}$ deformation modes.

Thus it can be concluded that meso-3,4-dimethyl-3,4-dinitrohexane exists in the gauche conformation in the solid state and as a mixture of gauche and trans rotamers in solution. In solvents like benzene, chloroform, and acetonitrile, the trans population is rather low.
(b) (\pm)-3,4-Dimethyl-3,4-dinitrohexane. The (+) and (-) isomers are spectroscopically equivalent. The stereochemistry of the carbon atoms involved is such that each enantiomer can exist as a mixture of three rotamers, all of which belong to C_{2} symmetry.

Figure 3 gives the Newmann projections of the rotamers (4)-
(6) expected of the $(+)$ or $(-)$ form. Rotamer (4) has the C_{2} symmetry axis as the only element of symmetry in the molecule. It would thus have 43 of the 84 fundamental modes associated with class A and 41 with class B. All the absorptions are expected to be both i.r. and Raman active as there is no centre of symmetry in the molecule. Although the rotamers (5) and (6) are not mirror-images of each other, each of them has the C_{2} symmetry axis as the only element of symmetry and thus belongs to the C_{2} point group.

Thus, all three rotamers of the $(+)$ - or $(-)$-isomer are of the same point group. However, they are of different energies and some of their bands are not expected to coincide; thus it may be possible to identify the absorptions belonging to each of them.

Comparison of the solid-state i.r. spectra of the meso and the (\pm) isomers shows that they are very similar except for the extra band belonging to the (\pm)-isomer at $1230 \mathrm{~cm}^{-1}$. There are a few other very weak extra bands at 527,805 , and $1015 \mathrm{~cm}^{-1}$ in the latter compound, but they appear as shoulders. Also, two bands at 497 and $735 \mathrm{~cm}^{-1}$ are of stronger intensity than their meso counterparts.

Inspection of the frequencies of the bands in the i.r. spectra of the (\pm)-isomer in the solid state shows that they are not mutually exclusive with those in the Raman spectra. This is as expected since all the rotamers of the $(+)$ and $(-)$ enantiomers have vibrational frequencies active in both types of spectra. Comparison of the solid- and solution-state i.r. spectra, however, shows that there are two extra bands in solution. These are found at 1328 and $598 \mathrm{~cm}^{-1}$ and they decrease in intensity with increasing polarity of the solvents. Thus these extra bands must belong to a non-polar rotamer [rotamer (4) in Figure 3]. From the intensities of these bands in non-polar solvents like carbon disulphide and carbon tetrachloride, it can be concluded that there is a substantial proportion of this rotamer in these solvents. Thus it can be concluded that in the solid state, either one or two rotamers e.g. (5) and/or (6) with nitro groups gauche to each other are present while in solution, another rotamer (4) with zero dipole moment comes into existence.

Inspection of the i.r. solution-state spectra shows that some bands disappear in non-polar solvents like carbon disulphide and carbon tetrachloride. Such bands are found at 3045,2935 , $1360,1300,1138,1015,682,551$, and $527 \mathrm{~cm}^{-1}$. However, some of them at $1138,682,551$, and $527 \mathrm{~cm}^{-1}$ are found to reappear in the very polar acetonitrile solution. These bands can be interpreted as belonging to a rotamer which is stabilized in the solid state through short-range crystal forces but become so destabilized in non-polar solvents as to disappear completely. However, in the very polar acetonitrile solution, probably due to stabilization by the 'reaction field' effect, it becomes stable enough to exist although, from the band intensities in acetonitrile solution, it can be concluded that even in this very polar solvent the proportion of the rotamer present is very small. Probably this rotamer has conformation (5) or (6). Also these bands are found to be weak in intensity in the solid state, showing that the more stable of the two rotamers (5) and (6) is present in larger proportion than the other rotamer in the solid state. It is possible that the more stable rotamer is (5), where the bulky ethyl groups are furthest apart. Thus it can be concluded that rotamers (5) and (6) are present in the solid state and this would explain the extra number of i.r. bands in the solid state of the (\pm) pair when compared with those of the meso compound which exists only in one conformation in the solid state.

Dipole Moment and Kerr Effect Measurements.-Results of the polarization measurements in benzene, carbon tetrachloride, and cyclohexane at various temperatures are summarized in Table 2. Kerr effect measurements in benzene and carbon tetrachloride are also included.
(a) meso-3,4-Dimethyl-3,4-dinitrohexane. Table 2 shows that
the dipole moment of this compound increases with increasing temperature in carbon tetrachloride. This implies that ΔE, the internal energy difference between the rotational isomers (i.e. gauche and trans), is positive. Application of the Lennard Jones-Pike ${ }^{11}$ method gives a ΔE value of $1.51 \pm 0.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ with the dipole moment of the gauche rotamer $\left(\mu_{\mathrm{g}}\right)$ equal to $16.51 \times 10^{-30} \mathrm{Cm}$ and its dihedral angle (2 θ) equal to 80°. The corresponding proportion of the gauche rotamer in carbon tetrachloride solution is 53%. In calculating the dihedral angle (2 2) between the two $\mathrm{C}-\mathrm{C}-\mathrm{NO}_{2}$ planes of the molecule $\left(\mathrm{CMeEtNO}_{2}\right)_{2}$, we have used the equation $\mu(\theta)=2 \mu_{0} \sin \alpha \cos \theta$, where μ_{0} the moment of the symmetrical half of the molecule is equated to the moment of 2-nitrobutane; α, the supplement of the $\mathrm{C}-\mathrm{C}-\mathrm{NO}_{2}$ bond angle is taken as 70°; and $\mu(\theta)$ the resultant moment of any conformation is equated to μ_{g}. Our spectroscopic results showing that, in non-polar solvents like carbon tetrachloride and cyclohexane, the trans-rotamer exists in appreciable concentration are broadly consistent with this value. The smaller ΔE value of meso-3,4-dimethyl-3,4-dinitrohexane ($1.51 \mathrm{~kJ} \mathrm{~mol}^{-1}$) compared with that of 2,3-dimethyl-2,3dinitrobutane $\left(2.52 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ shows that replacement of two methyl groups by two ethyl groups has made the gauche rotamer of the dinitrohexane compound more stable than that of the dinitrobutane compound in carbon tetrachloride solution, probably because of greater steric repulsive interactions between the ethyl groups.

Like 2,3-dimethyl-2,3-dinitrobutane, the dipole moment of meso-3,4-dimethyl-3,4-dinitrohexane in benzene decreases with increasing temperature. This indicates that ΔE is negative and that, in benzene, the gauche rotamer is now more stable than the trans. Calculations show that ΔE has a value of -5.15 kJ mol^{-1} with $\mu_{\mathrm{g}} 17.07 \times 10^{-30} \mathrm{Cm}$ and the dihedral angle 75°. The gauche rotamer population corresponding to these values is 80%.

There is also an augmentation of dipole moment in benzene relative to carbon tetrachloride ($3.2 \times 10^{-30} \mathrm{Cm}$) or cyclohexane ($2.7 \times 10^{-30} \mathrm{Cm}$). This solvent effect, which may be attributed to π-complex formation between benzene and the 'acidic' hydrogen atoms of the dinitro compound, is similar to the augmentation observed in the cases of 2,3-dimethyl-2,3dinitrobutane ${ }^{1}$ and 2,2,3,3-tetranitrobutane. ${ }^{2}$ As in these compounds, the plot of solution dielectric constant against solute weight fraction shows curvature, again indicating the stabilization of the polar gauche rotamer by its own reaction field. ${ }^{12}$ The ${ }_{\mathrm{m}} K$ value of meso-3,4-dimethyl-3,4-dinitrohexane in benzene ($-499 \times 10^{-27} \mathrm{~m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1}$) is significantly different from that in carbon tetrachloride ($5 \times 10^{-27} \mathrm{~m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1}$) thus providing independent confirmation of the solvent effect.

The thermodynamic quantities for the trans \rightleftharpoons gauche equilibrium for meso-3,4-dimethyl-3,4-dinitrohexane are very similar to those for 2,3-dimethyl-2,3-dinitrobutane (Table 4). In carbon tetrachloride in which no specific solute-solvent interaction is expected for both compounds, the difference between ΔH° and ΔE is positive, implying that the process of converting the trans into the gauche molecules is accompanied by an increase in volume, since the pressure remains constant. However, this increase is apparently smaller in the case of meso-3,4-dimethyl-3,4-dinitrohexane. On the other hand, in benzene solution, the difference bet ween ΔH° and ΔE is negative for both compounds, 1mplying a decrease in volume of the system when trans molecules are converted into the more stable gauche. This decrease in volume may be attributed to the more effective attraction between the gauche molecules and the solvent benzene molecules to form π-complexes, than the trans. The apparently greater decrease in volume in the case of meso-3,4-dimethyl-3,4-dinitrohexane suggests that a tighter solvent sheath is formed possibly due to the greater surface area of acidic hydrogen atoms available for π-complex formation.

Table 4. Thermodynamic quantities governing gauche-trans equilibrium in $\mathrm{kJ} \mathrm{mol}^{-1}$ for meso-3,4-dimethyl-3,4-dinitrohexane

Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$K=N_{g} / N_{t}$	ΔG°	ΔH°	ΔE	$\Delta H^{\circ}-\Delta E$
CCl_{4}	5	1.06	-0.13			
	25	1.14	-0.32	$(0.68)^{*}$	$(3.1 \pm 0.7$	1.51 ± 0.4
			$-3.5)$	(2.52 ± 0.05)	$(1.3 \pm 0.7$	
	45	1.22	-0.53			
Benzene	6	4.63	-3.56			
	25	3.94	-3.40	-8.2 ± 0.6	-5.15 ± 0.4	-3.1 ± 0.6
			(-3.39)	(-2.7 ± 0.6)	(-1.67 ± 0.05)	(-1.0 ± 0.6)

ΔG° is calculated from the relation $\Delta G^{\circ}=-R T \ln K . \Delta H^{\circ}$ is obtained from the slope of the $\ln K$ versus $1 / T$ plot by the method of least squares and assuming ΔH° to be constant over the temperature range. * Numbers in parentheses refer to corresponding values for 2,3-dimethyl-2,3dinitrobutane.
(b) (\pm)-3,4-Dimethyl-3,4-dinitrohexane. The dipole moment of (\pm)-3,4-dimethyl-3,4-dinitrohexane in carbon tetrachloride and in benzene is lower than that of meso-3,4-dimethyl-3,4dinitrohexane in the corresponding solvents by $c a .4 \times 10^{-30}$ Cm . This contrasts sharply with most meso/(\pm) diastereoisomers where the dipole moment of the meso isomer is normally significantly lower (e.g. in stilbene dichloride ${ }^{13}$), but is analogous to the case of 2,3-dicyano-2,3-diphenylbutane ${ }^{14}$ whose meso isomer also has a higher moment than the (\pm) diastereoisomer. It would appear that in (\pm)-3,4-dimethyl-3,4dinitrohexane dipolar repulsions between the $\mathrm{C}-\mathrm{NO}_{2}$ dipoles must override steric interactions between the $\mathrm{C}_{2} \mathrm{H}_{5}$ groups so that rotamer (4) would be favoured. This has the effect of lowering the overall moment of the (\pm) isomer to such an extent that the moment of the meso isomer is now greater than that of the (\pm) isomer.

Assuming that the moments of rotamer (5) and (6) are equal and that their dihedral angles are equal to the values found for rotamers (2) or (3) in the solvents carbon tetrachloride and benzene, it is possible to calculate the combined proportion of the gauche rotamers (5) and (6). This turns out to be 24% in carbon tetrachloride and 43% in benzene. The corresponding figures for rotamers (2) and (3) of the meso compound are 53 and 80%, respectively. The proportions of (5) and (6) thus calculated are expected to be less reliable than those for (2) and (3) because rotamers (5) and (6) are not strictly equivalent to each other, and will differ in physical dimensions from (2) or (3); nevertheless, these calculated proportions accord well with conclusions derived from our earlier spectroscopic data, and should provide a fairly quantitative basis for discussion.

The dipole moment of the (\pm) compound in carbon tetrachloride ($8.01 \times 10^{-30} \mathrm{Cm}$) is not significantly different from that in cyclohexane $\left(7.94 \times 10^{-30} \mathrm{Cm}\right)$ at $25^{\circ} \mathrm{C}$. However, that in benzene ($11.21 \times 10^{-30} \mathrm{Cm}$) is much higher than that in either carbon tetrachloride or cyclohexane. The augmentation of dipole moment in benzene relative to carbon tetrachloride is
found to be $3.20 \times 10^{-30} \mathrm{Cm}$, which is of equal magnitude to that of the meso analogue. This augmentation can again be explained partly by the 'reaction field' effect and partly by π complex formation. This solvent effect is again confirmed by the very different ${ }_{m} K$ values of the compound in the two solvents $\left(-267 \times 10^{-27} \mathrm{~m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1}\right.$ for benzene and $6 \times 10^{-27} \mathrm{~m}^{5} \mathrm{~V}^{-2}$ mol^{-1} for carbon tetrachloride).

Acknowledgements

We thank Miss Tiang Ai Chin for some assistance.

References

1 B. G. Tan, L. H. L. Chia, H. H. Huang, M. H. Kuok, and S. H. Tang, J. Chem. Soc., Perkin Trans. 2, 1984, 1407.

2 B. G. Tan, L. H. L. Chia, and H. H. Huang, J. Chem. Soc., Perkin Trans. 2, 1986, 31.
3 (a) L. W. Seigle and H. B. Hass, J. Org. Chem., 1940, 5, 100; (b) D. K. White and F. D. Green, J. Am. Chem. Soc., 1978, 100, 6760.
4 L. H. L. Chia, H. H. Huang, and P. K. K. Lim, J. Chem. Soc. B, 1969, 608.

5 K. E. Calderbank, R. J. W. Le Fèvre, and G. L. D. Ritchie, J. Chem. Soc. B, 1968, 503 .
6 H. H. Huang and S. C. Ng, J. Chem. Soc. B, 1968, 582.
7 H. H. Huang and E. P. A. Sullivan, Aust. J. Chem., 1968, 21, 1721.
8 R. J. W. Le Fèvre, (a) 'Dipole Moments,' Methuen, London, 1953, 3rd, edn. ch. 2; (b) Adv. Phys. Org. Chem., 1965, 3, 1.
9 N. Sheppard, Adv. Spectrosc., 1959, 1, 288.
10 A. O. Diallo, Spectrochim. Acta, 1974, 30A, 1505.
11 J. E. Lennard Jones and H. H. M. Pike, Trans. Faraday Soc., 1934, 30, 830.

12 L. Onsager, J. Am. Chem. Soc., 1936, 58, 1486.
13 K. Higashi, Bull. Chem. Soc. Jpn., 1938, 13, 158.
14 K. K. Chiu and H. H. Huang, Chem. Commun., 1969, 1336.

Received 19th March 1986; Paper 6/540

